

Daily Question Pure Mathematics Day 5 Mark Scheme

Question Number	Scheme	Marks
(i)	$\sum_{r=1}^{20} (3 + 5r) = 8 + 13 + 18 + \dots + 103$ <p>Use of $S_n = \frac{n}{2}(2a + (n-1)d)$ or $S_n = \frac{n}{2}(a + l)$ with $a=3$ or 8, $n=19$ or 20, $d=5$ and $l=103$</p> $S_{20} = \frac{20}{2}(8 + 103) = 1110$	M1 M1 A1 (3)
(ii)	$\sum_{r=0}^{\infty} \frac{a}{4^r} = 16 \Rightarrow \frac{a}{1} + \frac{a}{4} + \frac{a}{16} + \dots = 16 \quad r = \frac{1}{4} \text{ oe}$ <p>Use of $S_{\infty} = \frac{a}{1-r}$ with $0 < r < 1$ and $S_{\infty} = 16$</p> $16 = \frac{a}{1-r} \Rightarrow a = \dots$ $a = 12$	B1 M1 dM1 A1 (4) (7 marks)

(i)

M1 Minimal evidence of the sum of an arithmetic sequence.
Accept as evidence the first 3 terms written out as 8+13+18.. or 8+13+..+103

or 8,13,18 followed by the sum formula $S_n = \frac{n}{2}(2a + (n-1)d)$

or 8,13,...103 followed by the sum formula $S_n = \frac{n}{2}(a + l)$

Do not accept on its own however $3+5\times 20$ or 103 without any reference to a sum

M1 Uses $S_n = \frac{n}{2}(2a + (n-1)d)$ with $a = 3$ or 8 , $d = 5$ and $n = 19$ or 20
or $S_n = \frac{n}{2}(a + l)$ with $n = 19$ or 20 , $a = 3$ or 8 , and $l = 103$

Accept a list of 20 terms as long as all terms are written out.

A1 1110. Accept this for all 3 marks as long as no incorrect working is seen.

Alt (i)

M1 Splits the sum into two separate parts, and uses/states $\sum 1 = n$ and $\sum r = \frac{n(n+1)}{2}$ both

$$\sum 3 + 5r = \sum 3 + \sum 5r = 3 \times n + 5 \times \frac{n(n+1)}{2}$$

M1 sub 20 or 19 into the above

A1 1110

(ii)

B1 For stating or implying that $r = \frac{1}{4}$.

You may see a series or sequence of terms with $\times \frac{1}{4}$ or $\times 0.25$.

Accept variations on $a + \frac{a}{4} + \frac{a}{4^2}$ or even $\frac{a}{4}, \frac{a}{16}, \frac{a}{64}, \dots$

M1 For using the formula $S_\infty = \frac{a}{1-r}$ with $S_\infty = 16$ and $0 < |r| < 1$

dM1 Dependent upon the previous M. For proceeding to $a = ..$

A1 12